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Magnetohydrodynamic drag on an oscillating sphere 

By ROBIN 0. MOTZ 
Plasma Laboratory, Columbia University, New York City? 

(Received 31 August 1965) 

The case of a dielectric sphere executing small-amplitude oscillations in an incom- 
pressible, conducting fluid with a uniform magnetic field aligned along the axis 
of oscillation is studied. For the case of large Hartmann and Reynolds numbers, 
the MED equations are linearized. Solutions correct to O(R,) are obtained for 
the velocity, pressure, current, and electric and magnetic fields in the fluid. The 
MHD drag on an oscillating dielectric sphere in mercury was experimentally 
determined in aligned fields to 0.8 Wb/m2. The experimental results agree well 
with the theory. The theory and experiment were extended to include the 
regime where the perturbed velocity is not small compared with the velocity 
present in the absence of a magnetic field. The validity of using the inviscid 
velocity to compute the current is verified by measuring the angular dependence 
of the induced electric field. 

1. Introduction 
We consider here a dielectric sphere executing rapid, small-amplitude oscilla- 

tions in an electrically conducting fluid, with a uniform magnetic field aligned 
along the axis of oscillation. 

The problem in the absence of a magnetic field has been studied by Green (1833) 
and Stokes (1843) for an inviscid fluid, and by Stokes (1850) for a viscous fluid. 
Stokes’s viscous solution, which involves an expansion of the velocity in the 
dimensionless amplitude so that the convective term may be neglected in the 
substantive derivative, has been verified qualitatively for the case of a sphere by 
Carstens (1952) and quantitatively for a cylinder by Stuart & Woodgate (1955). 
Stokes’s work shows that the inviscid velocity field may be used to describe 
the bulk motion of the fluid because oscillation a t  high Reynolds numbers 
confines the effect of viscosity to a thin boundary layer surrounding the body. 
Since we are dealing with large Hartmann numbers, outside this boundary layer 
any vorticity present will be due to electromagnetic rather than viscous forces. 
Furthermore, outside this boundary layer, Stokes’s solution reduces rapidly to 
the inviscid solution. 

Within the past ten years, several authors have studied the effect of a magnetic 
field on the uniform motion of a sphere through a conducting fluid. The inviscid 
case has been studied by Reitz & Foldy (1961), who considered a uniform, external 
field, and by Ludford & Murray (1960), who considered a magnetized sphere. 

t Present address: Department of Physics, Stevens Institute of Technology, Hoboken, 
New Jersey. 
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Reitz & Foldy showed that, correct to first order in the magnetic Reynolds 
number, the drag can be computed by equating the work done to keep the sphere 
moving with constant velocity to the Joule loss in the fluid. They computed their 
current from the applied magnetic field, and the known inviscid fluid velocity 
which would be present in the absence of a magnetic field. 

The case of an oscillating sphere has very recently been considered by Singh 
(1965). In  the limit of zero viscosity and compressibility, his drag result agrees 
with Reitz & Foldy. However, Singh restricted himself to weak magnetic fields 
(less than 50G), so that the magnetic pressure is at most comparable to the 
dynamic pressure; we do not make this restriction. 

There have been two experiments dealing with the MHD sphere-drag problem. 
Dorman & Mikhailov (1963) measured the electric and magnetic fields generated 
by the uniform motion of a sphere in mercury with an aligned magnetic field for 
small Stuart number. They found functional (qualitative) agreement with the 
fields predicted by Reitz & Foldy. The only known experiment that attempted 
to measure the drag directly was that of Maxworthy (1962). He dropped spheres 
in liquid sodium with an aligned magnetic field, and computed the drag from the 
terminal velocity. This was a check of the linearized MHD equations with 
viscosity present. Maxworthy's experiment showed only qualitative agreement 
with the work of Chester (1952) and with a prediction of Childress (1961) in that 
the drag was observed to scale linearly with (IMIR,) at low magnetic fields. 

2. Equations for an oscillating body 
The MHD equations for an incompressible, inviscid fluid are: 

p{(av/at)+(v.v)v)= - v ~ + J ~ B ,  v . v =  0, 

V x E  = -asp, V X B  = ,uJ, V.B = 0, 

J = a ( E + V x B ) ,  V.J=O.  

Consider now an axisymmetric body of length a in the fluid, oscillating with 
amplitude xo and angular frequency o, so that its velocity is 

where 2 is the unit vector in the z-direction, and apply an external magnetic field 
H, = Ho k. Equations (1) are made dimensionless by substitution of the following 
new variables 

(3) 
V* = V/U,, E* = E/,uuU, If,, t* = wt, r* = r/a, 

H* = H/Ho, J" = J/(Ho/a), p* = p/pV5, 

where V, = J(,uHi/p) is the Alfvkn velocity. Then 

V*.V* = 0, V*.H* = 0, V". J* = 0, (4 a, b,  c )  

1 av* 
- [-- 4- U(V*. V*) v*) = -pv*p* +pJ* x H*, 
a at* 
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and in (5)-( 7 )  the following dimensionless parameters are used : 

R, = U,U+W, p = V$/Ui  = ( ,~H,2) / (pUi) ,  a = V,/'(UU) = Z,/a;. (8) 

Following Stokes, V* is expanded as a power series in a. Keeping only the first 
order terms, ( 5 )  becomes 

av*/at* = -pv*p* + p ~ *  x H*. (9) 

That is, for small-amplitude oscillations, the substantive derivative may be 
replaced by the partial time derivative, correct to O(a). 

The interdependence of the velocity and the magnetic field is simplified by 
expanding all quantities of interest as a power series in the magnetic Reynolds 
number R, ; 

Upon expanding (4), (6), (7),  (9) and collecting coefficients of like powers of R,, 

V.V, = 0, V . h ,  = 0, V . j ,  = 0, (10 a, b, c) 

V x h, = j,, a V  x el = -ah,/& (11 a, b )  

j, = 0, j, = (e,+v, x h,), (12 a, b )  

av,/at = -pVp, +pj, x h,. (13) 

(lo)-( 13) are a complete set of equations which, when boundary conditions are 
applied, can be solved for all quantities of f i s t  order in R,, once v, and h, are 
known. 

3. Solution for an axisymmetric body of arbitrary shape 
Since j, = 0, h, is irrotational. Since it is also solenoidal, it  may be chosen as 

uniform and constant, so we set h, = 2. As h, is chosen to be time-indepen- 
dent, e, is also irrotational. From ( l a b )  and ( lOc) ,  e, is solenoidal for a body 
oscillating along an axis of symmetry since then v, has no azimuthal component. 
We therefore choose e, = 0. (12b) then gives 

j, = vo x 2. (14) 

(14) may be solved immediately for j, once v, is known. We seek, however, an 
expression for j, which does not contain v, explicitly. This is because it is desirable 
to express v,, h, and p1 in such a manner that, once j, is known, they may be 
written down with minimal calculation. For zeroth order in R, there is no 
dissipation. Applying Kelvin's theorem 

v x vo = w, = 0. (15) 

(Note that for oscillatory motion (15) applies only to O(a).)  Taking the curl of 
(14) twice yields x j l =  (h,.V)v,-(v,.V)h,= (h,.V)v,, 

V x ( V x j , )  =-Vzj,+V(V.j,)  = -VZ(j,) = (h,.V)w,= 0, 

so that any current generated by an irrotational velocity satisfies 

Vzj, = 0. (16) 
45-2 
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Since j, must be azimuthal as well as solenoidal, then if it vanishes at infinity it 
must have the form (Morse & Feshbach 1953) 

where the An are fbtained from ( la) ,  P$(cosO) is the first associated Legendre 
polynomial, and c$ is the unit azimuthal vector. 

h, is found by substitution of (17) in (1  1 a )  

The most general function that satisfies (18), is solenoidal, and vanishes at  

where the 23,'s are to be determined by boundary matching hl at the surface of 
the oscillating body; 1. and 6 are unit vectors. 

To solve for v,, the vorticity due to electromagnetic forces is needed. Taking 
the curl of (13) and substituting h, = 2, 

and, substituting for j, from (17), 

v1 must satisfy V x v1 = ol, ( ~ O U ) ,  and the boundary conditions 

v,+0 as r + m ,  

v,. ii = 0 on the body. 

The second condition of (22) follows from the inviscid boundary condition 
V . fi = U . ii on the body, which is already satisfied by v,. Solving for v,, we find 

n(n + 1) 
2(2n+ 1) 

n2(n + P,,,) F + (cos ep:, - 
n rnfl 2(2n+ 1)  

where the C' are chosen to satisfy (22) for the body. 
The pressure drag is found by integrating the perturbed pressure p ,  over the 

surface of the body. This pressure may be determined by direct integration of 
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equation (13), which may be written 

upon substitution for j, and v,. Note that the resultant drag will just depend on 
the current in the fluid; nowhere in (13) does the conductivity of the body enter 
explicitly. That is, (13) does not directly take into account the current and 
magnetic field inside the body. This means that the internal field contributes a 
term to the pressure drag of O(R&) at best. One might think that the electro- 
magnetic effect of the body on the pressure drag would appear if (13) were 
rewritten so that h, appeared explicitly, since the Bk's depend on the conductivity 
of the body through boundary conditions. It will be shown that, although the 
pressure can be written as a function of v, and h,, the conductivity of the body 
will not appear in the pressure drag term of O(R,). 

(13) is rewritten to simplify the computation of pl by using the vector identity 
(C x h) x h = (h . V) h - iVh2, and keeping only O(R,) 

The divergence of (24 a )  gives 
V2(p, + h,. 2) = 0, 

so  that Plfhl .9 = c 3 D?J PY. (24b) 
Y 

The pressure is found by substituting V, and h,, once they are known, into (24a), 
and using (24b) to determine y by matching powers of r. Then pl is found by 
evaluating D, through the substitution of (24b)  into the z-component of (24a) 

-(vl.z) a A  = -p ar, 
at a2 

4. Solution for a sphere 

is (Lamb 1952) 
The potential velocity for a sphere of radius a oscillating with smallamplitude 

V, = ( &U, a3/r3) ( 2  cos OF + sin 66) eiwt, v,, = &r3( 2 cos 69 + sin 6e) e", (25) 

so that 

By comparison with (17), n = 2, A, = - +. The vorticity is then 

and from (23) 

j, = - $v3 sin 8 cos 6' eit 8. (26) 

o1 = ( i~~ , / r4) (12s in8-  15sin30)eit& (27) 

' B A 2  {(sin ep; - 8p3) F + (cos eP; - QP;) e> ea + v r"+lhe G n p m  it , 
v 1 = - r 3  

- - - '9 (6 cos 8 sin2 8P + $ sin3 6 6} eit + V &. 
rn 
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For a sphere, (22) becomes v,.P = 0. Since 

6sin2ecos0 = -~~( (P ,+P, ) ,  

then to satisfy the boundary condition m = 1, or 3. After solving for C,, C3 

From (19), the magnetic field is 

k is evaluated by using (29) and (24). Substitution of (3O), (29) and (26) in (28) 
shows that, to match powers of r and cose, k = 2 or 0. k = 0 must be rejected 
because it gives rise to an electric field that becomes infinite at  8 = 0. Thus 

From (31) and ( l l b )  
el = e(r)  sin e cos e ei!$, 

and el vanishes at  6' = O", 90" where v, is parallel to h,. Making the substitution 

B, = rA,, (33) 

(31) and (1 1 b) are used to solve for el. From (32), el is seen to be solenoidal. Since 
it has only one component, the integration of (1 1 b)  after substitution of (31) is 
straightforward 

To compute the pressure, (30) is substituted in (24b) to give 

Substitution of (35) and v, in (24c) shows that y = 1 or 3. Solving for Dy, 

D, = +A,, D, = &~,(3r - 6), 

and the perturbed pressure is 

must be evaluated to complete the solution, which involves computing the 
fields inside the sphere. This has been done (Motz 1964). There are three cases. 
Let the sphere have unit permeability. Then for an infinite-conductivity sphere 

r = r  3,  (37a)  
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for a dielectric sphere, 
(37 a) 

for conduction current larger than displacement current, 

where 

Here ge denotes the real part, and It is the modified Bessel function of half- 
integral powers of i. 

5. Drag and energy dissipation for the oscillating sphere 
To compute the drag, the force exerted on the sphere is calculated. We are 

interested in the instantaneous (i.e. time-dependent) drag because this is the 
force that appears in the equation of motion of damped oscillation; therefore a 
time average is not computed. There are two sources of drag: the mechanical 
(fluid) pressure, and the Maxwell stress. 

The pressure drag is computed by integrating the pressure over the surface of 
the sphere. Since the pressure acts normally, the dimensionless drag is given by 

From the orthogonality of the Legendre polynomials, only the coefficient of PI in 
(36 )  will contribute to the drag. Therefore I' will not enter into this drag, and the 
pressure drag on the sphere is insensitive to the conductivity of the sphere to 
Q(R,). Substitution of (36 )  into (39) gives 

Dp = -4 Rrn(4nr/5), (40) 

or F P = - gnB; va3U0 eiot, (41) 

and this is the instantaneous mechanical force on the sphere. 
To obtain the drag due to electromagnetic stresses, the Maxwell-stress tensor 

must be integrated over the surface of the sphere. Since the sphere normal is 
radial, and the force in the z-direction is sought, this becomes 

F, = -2na2pH;Rm hl.Pd(cos8) = - (  ) (1-3I')P,dc0~8 = 0. (42)  L sI1 
Thus the magnetic stress tensor makes no contribution to the force on the sphere 
to O(R,). 

At this point it is worth while to comment on the work of Ludford & Murray 
(1960), who treated the uniform motion of a magnetized sphere. Their results 
differ from those obtained here in three respects: the drag is not independent of 
the sphere conductivity to O(R,), the Maxwell-stress drag does not vanish to 
O(R,), and they state that an expansion in R, may be non-uniform. These results 
are correct only for the case studied in that paper, namely when the sphere is the 
source of the magnetic field. When the sphere is magnetized, then the induced 
current and hence the drag depend upon the sphere conductivity through the 
electromagnetic boundary conditions at  the surface of the sphere. This follows 
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from the fact that their applied field (i.e. the magnetic field of the sphere) must 
follow the field in the fluid instantly, due to the continuity of B. However, in 
the present case, where the field is applied from infinity, the disturbance field in 
the fluid attenuates before it can reach the source of the appIied field. It is 
precisely this different response of the applied field to the induced field that 
produces a contribution from the magnetic-stress tensor. Their series in R, may 
be non-uniform while the present one is not for the same reason: their source field 
must follow the fluid field, and thus the j x B term must involve the perturbed 
fluid field in both j and B to first order; this is not so in the case under considera- 
tion, where only j is involved. 

Now that the drag on the sphere is known, the energy balance of the system 
will be checked; this will yield another method of computing the drag. Energy is 
being dissipated because of the mechanical work that must be done to  keep the 
sphere oscillating : 

In  the fluid, there is a motional e.m.f. which acts as a battery. The electric field 
which generates it Emot is doing work at  a rate 

aW,,,,/at = F. U, = - +yB; aa3U,2. (43) 

= /  J.E,,,dr. 
at v 

The current can be written as 
J = r ( E  +',O+,) 7 

where V x E = - p  aH/at, so that 

(44) 

(45) 

That is, the work done consists of two parts: ohmic heating, and energy fed into 
the electromagnetic field. Using Maxwell's equations and a vector identity, the 
right-hand side of (46) can be rewritten as 

(47) 
V 

The two terms on the right represent the rate of increase of electromagnetic field 
energy, and the rate of flow of this energy across the bounding surface. Therefore, 
since the e.m.f. is being driven by the mechanical force put into the system to 
move the sphere, 

( , ~ l P + k E ~ ) d 7 +  (ExH).dS. (48) s 
In  evaluating (64), we keep terms of O(R,) only and obtain 

The first integral is not dropped as being of O(RL)  because an expansion in the 
magnetic Reynolds number is essentially an expansion in the conductivity, and 
thus (RL/a) is of O(R,) in that it approaches zero as r ,  not as r2. The last two 
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integrals vanish, again due to the orthogonality of the Legendre polynomials. 
Thus (49) reduces to I$&= -3rB;aa3U; =F.U,.  (50) 

We see, just as Reitz & Foldy (1961) found for the case of uniform motion, the 
MHD drag on the sphere to O(R,) is equal to the Joule loss in the fluid divided by 
the velocity of the sphere, which loss may be computed directly from the applied 
magnetic field, and the zero-order, inviscid velocity. 

6. Strong magnetic fields 
If first-order quantities are adequate to describe the motion and fields in the 

fluid, it  must be shown that a power series expansion is physically meaningful. 
That is, the induced velocity V, and the induced magnetic field H, must be at 
least an order of magnitude smaller than the fields present when the fluid is non- 
conducting 

Note that our condition for the smallness of the induced velocity is more easily 
satisfied than is the similar condition for uniform motion: V,/V, N PR, < 1 
(Reitz & Foldy 1961). 

For a 0.01 m sphere in mercury (a = 106mhos/m) oscillating with an amplitude 
of lO-3m a t  100 rad/sec, Bm = so that the induced magnetic field will always 
be small compared with the applied field, a result that is independent of the 
strength of the applied field. Substituting these numbers, the condition on the 
velocity becomes 

(51) HJH, - R, < 1, V,/V, N @R, < 1. 

B; a 
@R, = ~ N" 0.6B; < 1, (52) 

P W  

where the applied field B, is measured in Wb/m2. Then the present results are 
valid for fields of less than about 0.4 Wb/m2 in mercury. 

Thus for large fields we no longer have small perturbations of the fluid dynamic 
solution. Physically, what is happening is that the Lorentz force 

~ ( V X  B,) x B, = f vVB; ^p 

(8 is the unit vector normal to the z-axis) opposes the flow of fluid around the 
sphere in the direction normal to B, and the fluid transmits this body force to the 
sphere, where it appears as MHD pressure drag. In  so acting, this force reduces 
the value of V,, and thus of the induced current, i.e. 

(V,+V,) x B, < V,x B,. (53) 

Since the actual current will be less than that computed by J, = aV, x B,, the 
drag will also be smaller. From (51) it is seen that the correction is of order 
a,BR,. This correction by itself, however, will still not give a correct value for the 
drag, since by using (V, + V,) the current would be underestimated. In  fact, if 
the drag is corrected just to 0(@Rm) it will vanish for some value of BE, which is 
physically impossible. A second drag correction must be computed; this will be 
of O(CZ/~R,)~.  Thus to O(R,) the induced velocity, and hence the current and the 
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drag, must be calculated as an alternating power series in aPR,, In particular, 
the drag may be written as 

F = - 5n-B; mx3U0[ 1 + C ( - l)nf(n)] ei6)t. (54) 
n 

To evaluate f("), it must first be shown that the magnetic stress makes no 
contribution to the drag to order R,(aPR,)". Assuming the sphere to have the 
same permeability as the fluid, then at  the surface of the sphere the normal 
component of H is continuous, provided it can be derived from a potential inside 
the sphere. Since the sphere is a dielectric, no true currents can exist inside it, 
and H satisfies this condition. Since the stress integral reduces to O(R,) to the 
integral of the normal component of HI over the sphere (42), then, if this com- 
ponent is continuous, there can be no net force on the sphere due to magnetic 
stresses across its surface. 

Thus all the MHD drag appears as pressure drag. Ludford & Murray (1960) 
have shown that the pressure drag due to the Lorentz force may be computed 

dr from 
F = n-vBi a314 lam IT (2fT cos 8 +fs sin 8) sin 8 d8 - , 

0 r ( 5 5 )  

where f is the dimensionless Lorentz force. For our case, 

f(" = (v(%) x b,) x b,, ( 5 6 )  

where the correction to the velocity is computed from 

and the correction to the current is computed from 

0' (58)  jh) = v(n) x b 

Note that for n 2 1, Vzj(n) += 0, because the current is being generated by a non- 
potential velocity. Proceeding in this manner we obtain 

JI1) = J,(i~l/!?R,(g C O S ~  8 - :I}, (59) 

f(l) = -i~~/?R,(1*08), (60) 

f@) = (CC/!?R,)~ (1.15). (61) 

7. Description and analysis of experiment 
The experimental arrangement is shown in figure 1. The small moving sphere 

is encased in a large dielectric spherical shell, which is filled with fluid. The moving 
sphere is suspended vertically between two springs, the lower of which is fixed 
at the far end. The upper spring is driven harmonically by a low-frequency 
loudspeaker. The equation describing the resuItant motion of the sphere is 

Fa eiwl  = - mwzz, eiot + iwAz,  eiwt  + (k, + k,) zo e i w t ,  (62) 

where Fo(t) is the input force, k, and k, are the upper and lower spring constants, 
zo is the amplitude of oscillation of the sphere, and A ,  the coefficient of dissipation 
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(drag) has the dimensions of (force/velocity). Taking the real part of (62), and 
writing the input force as the product of k, and the input amplitude b, 

b, k, cos wt = [(k, + k,) - muz] zo cos wt - wAz, sin wt. (63) 

At resonance, w = w, = J{(k, + k2)/rn}. (64) 

DC differential 
transducer 

Ferrite core 

I I 

Magnet 
coil 7 

FIGURE 1. Experimental assembly. 

Substitution of (64) into (63) shows that at resonance the drag coefficient is 
linearly proportional to the ratio of input to sphere amplitude 

a = b,Ic,/z,w,. (65 )  

The input and sphere amplitudes were measured with Hewlett-Packard DC 
differential transducers, which generate a DC voltage proportional to linear 
displacement. For this system, there are sinusoidal outputs at  resonance, and 
the input and sphere amplitu'des are 90" out of phase. This fact was used as a 
sensitive test to determine when the system was at  resonance: the output of one 
DCDT was placed on the horizontal deflexion plates of an oscilloscope, and the 
output of the other on the vertical plates. When the resultant Lissajous ellipse 
was vertical, the system was at  resonance. 
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The measured drag consists of three parts: the tare drag A,, the viscous drag 
A,  and the MHD drag A,. The tare drag was mainly due to sliding friction at 
the point where the wire left the case. The experimental apparatus was calibrated 
by measuring the viscous drag when the fluid was water. The system was first 
run at resonance with no fluid; this determined A,. The case was then filled with 
water, the new resonant frequency measured, and the new drag determined. The 
difference between this drag, (A, + A& and the air drag A, should be the Stokes 

A,  = 6 7 ~ ~ , 1 ( 1  +./a), (66) 
drag 

where 6, the thickness of the viscous boundary layer, is the e-folding distance of 
the vorticity, and is given by 

8 = @ l / P 4  = a;i(2alRe). (67) 

As a further check on the accuracy of our system, the induced mass was also 
measured. This added inertial mass arises from the fact that the motion of the 
sphere forces the water to oscillate; thus all of the input force does not go into 
accelerating the sphere 

This induced mass was determined by the difference between the resonant 
frequencies for air and for water 

F,,, = mz, = (m, + 6m)E,. 

and is to be compared with the Stokes value 

6m = +7rpaS(* + ;&/a). (69) 

When the MHD experiment with mercury was performed, it was essential to 
determine if, in fact, the inviscid potential velocity may be used to compute the 
current. This was done by measuring the e.m.f. induced in pick-up coils placed at 
polar angles of 30", 45", 60" in the azimuthal plane. If it is correct to use the 
potential velocity, the current is given by (26), and the associated time-dependent 
magnetic field will generate an azimuthal electric field given by (34). Since the 
angular dependence of this electric field is sin 0 cos 6, then the angular dependence 
of the e.m.f. induced in a coil coplanar with e and concentric with the line of 
motion is &(8) = sin2 6 cos 8. 

100-turn pick-up coils were used, and were loaded to make their resistances 
equal. The coil signals were increased with a power amplifier, and measured with 
a lock-in amplifier. Due to the fact that the lock-in amplifier contained an 
internal phase shifter, it  was possible to measure the e.m.f. associated with 
J, = crV, x B,, rather than the current that is actually present 

J = J1( 1 + i~lPR,j(')). 

8. Experimental results and analysis 
The experiment was performed with a lucite ball in a spherical lucite case with 

walls 0.25in. thick. The inner radius of the case was 10 times the radius of the 
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ball. This effectively removes wall effects from the fluid dynamic motion because 
it can be shown (Lamb 1952) that for this problem the effect of the bounding wall 
on the fluid velocity, viscous drag and added mass varies as the cube of the ratio 
of the two radii. 

The driver of the system was a woofer produced by Acoustical Research 
Corporation (model AR-3), which has a nominal throw of 0.250in., and bottoms 
out at  0.50in. It was vibrated by an audio oscillator, and has less than 1 yo 
harmonic distortion at the current input used. The frequency of oscillation was 
measured with a stroboscope, and at  the frequency used (typically 20-30 c/sec) 
this meter has an error of -t 0-083 c/sec. 

The magnetic field was generated by five Magnion Plasmaflux coils, supplied 
by a rectifier having less than 1 % peak-to-peak ripple. The magnetic field was 
designed to have less than 1 % variation in the longitudinal field, and to keep the 
radial field less than 1 % of the longitudinal field, within a sphere of radius 4 in. 
During the experiment, the magnetic field was measured with a rotating coil 
gaussmeter, which has an accuracy of 1 %. 

The values for the viscosity and density of water were taken from the Handbook 
of Chemistry and Physics, as were the density and conductivity of mercury. The 
value for the conductivity was checked by measuring the resistance of a column 
of mercury of known length and cross-section; the results agreed with the book 
value within experimental error. The viscosity of mercury at the temperature 
of the room was calculated from the work of Andrade (1934). 

The experiment was performed using a lucite ball of radius 0-9575 f 0.0064 cm 
and sphericity 0,005. The results in the absence of a magnetic field are contained 
in table 1. 

Air resonant frequency 
Fluid resonant frequency 
Boundary layer, &/a 
Air resonant mass 
Fluid resonant mass 
Tare drag, A ,  
Fluid drag, A ,  + A ,  
Theoretical induced mass 
Experimental induced mass 
Theoretical viscous drag 
Experimental viscous drag 

Water 

27.58 f 0.083 c/sec 
25.33 f 0.083 cjsec 

10.49 & 0.21 g 
12-44 & 0.24 g 

1.13 x 

(96*9& 1.72) x 103N/m/sec 
(102-4+ 1.77) x 103N/m/sec 

1.928 & 0.023 g 
1.95 & 0.24 g 

(15.45 f 0.16) x 103N/m/sec 
(15.5 & 2.47) x 103N/m/sec 

TABLE 1. Hydrodynamic results 

Mercury 

31.00 f 0.083 c/sec 
20.00 f 0.083 c/sec 
3.43 x 10-3 

17.58 f 0.34 g 
42.24 f 0.81 g 

(210.0 f 3.65) x 103/N/msec 
(273.9 f 4-03) x 103/N/msec 

24.71 0.30 g 
24.66 f 0.86 g 

(61.59 f 0.64) x 103N/m/sec 
(63.9 & 5.44) x 103N/m/sec 

Thus agreement is obtained within experimental error for the value of Stokes’s 
drag andinducedmass for a sphere executing small-amplitude oscillations. In  fact, 
this is the first time this measurement has been performed for a sphere with 
amplitude conditions appropriate to compare with Stokes’s analysis. These 
results are (after all these years) a quantitative verification of Stokes’s solution 
for an oscillating sphere. 
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It may be thought that the relatively high percentage error in the experimental 
value of the viscous drag should be reduced. This error arises because the viscous 
drag issmall compared with the tare drag. A small percentage error in the total 
drag becomes a large percentage error when the two nearly equal drags are sub- 
tracted to obtain the viscous drag. The error could be reduced by increasing the 
size of the moving sphere, thus increasing the viscous drag. This would indeed 
have been done if this were an experiment designed solely to test the equations 
of viscous oscillatory motion. However, we are interested principally in mea- 
suring the MHD drag. Since this drag will be determined by subtracting the drag 
without magnetic field (A, + All) from the drag with a magnetic field (AM + A, + A7), 
it  is desirable to keep this 'background' drag as small as possible. The main 
contribution to the tare drag comes from the frictional force on the wire where it 
leaves the case. Since this cannot be reduced without permitting the fluid to 
leak out during the experiment, the viscous drag must be kept small. 

It is important to note that agreement was found with Stokes's theory despite 
the existence of a small secondary flow. This is a streaming effect (non-oscillatory) 
which drives fluid away from the sphere along the axis of oscillation. The fluid 
flows out until it reaches the case, then flows down the wall, and returns to the 
sphere in the equatorial plane. The flow was made visible by dropping ink into the 
water, and was observed to commence outside the viscous boundary layer at a 
distance of approximately 6/a, as predicted (Andres & Ingard 1953 ; Stuart 1963). 
The drag agreement shows that the contribution of the secondary flow to the drag 
is unimportant compared with the oscillatory flow. Although this is known 
theoretically and experimentally for certain distant boundaries, one could not 
be sure of this a priori for the given boundary conditions. 

When the magnetic field was turned on, and the sphere was filled with mer- 
cury, the validity of using the potential velocity to compute the current was 
checked by measuring the e.m.f.'s picked up in the three coils. The data are pre- 
sented in table 2; the errors represent standard deviations. The measured 
angular dependence agrees with that predicted by (70), so that the use of the 
inviscid velocity to compute the current, and hence the drag, is shown to be 
correct. 

&( 60")/&(45") 6(45O)/6(3Oo) &( 6Oo)/&(45O) 

Theoretical 1.060 0.011 1.632 f 0.016 1.732 & 0.017 
Experimental 1.085 & 0.056 1.626 & 0.084 1.755 & 0.090 

TABLE 2. Ratio of coil e.m.f.'s at different polar angles 

When examining oscilloscope pictures of the induced e.m.f., smaller waves of 
higher amplitude were observed to modulate the 20 c/sec signal created by h,. 
These represent the e.m.f. induced by damped Alfvdn waves, and will be discussed 
in a future paper. It was the presence of these waves that necessitated the use 
of the lock-in amplifier, with the relatively large error of 5 %, to measure the 
induced e.m.f. 
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The experimental MHD drag values are plotted against B,2 in figure 2. Very 
good agreement is found by the theory which includes terms of O ( O I B R ~ ) ~ .  In  the 
graph, the theoretical curve is obtained from 

(71) 

(72 )  

A ,  = $nBic~a~{l-  1.0801/3B,+ 1.15(~~/3R,)~}, 

A ,  = 1135B3 1 - 0.651B; + 0.388Bt) x 103N/m/sec, 

which, for the given experimental apparatus becomes 

where B, is in units of Wb/m2. The error bars in the graph are derived from the 
percentage error. Note that the percentage error in the experimental value of 
A ,  decreases as A ,  increases and becomes larger than A,. 
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FIGURE 2. Variation of magnetic drag with magnetic field. 

9. Conclusion 
Analytical solutions have been obtained for the MHD problem of a dielectric 

sphere executing small-amplitude oscillations in mercury with an alignedmagnetic 
field, under the assumption of low magnetic Reynolds number. The angular 
dependence of the induced electric field was measured, and the results justified 
the use of the inviscid velocity to compute the induced current. The magnetic 
drag was measured, and showed excellent agreement with the theoretical value, 
which was extended to include the regime where the induced velocity was not 
small compared with the inviscid velocity. 

In  the calibration of the experimental apparatus, the induced mass and viscous 
drag on an oscillating sphere were measured for the first time within the limits of 
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the Stokes small-amplitude approximation, and agree with Stokes’s theoretical 
values. 

To the author’s knowledge, this is the Erst quantitative verification of a 
perturbation solution to the linearized MHD equations. 

This paper is taken from a thesis submitted as partial fulfilment of the 
requirements for the degree of Doctor of Philosophy in the Faculty of Pure 
Science, Columbia University. I would like to thank Professor Robert A. Gross, 
my thesis advisor, for his advice and encouragement during the course of this 
work. I would also like to thank Maurice Cea and John Osarczuk for their help in 
constructing the experimental apparatus and for their assistance during the 
experimental runs. This study was supported by the National Science Founda- 
tion under grant NSF GP-554. 
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